Let's Have Σ Fun!

Mathematical Games for Math Circles

Dr. Shelley Stahl

Joint Mathematics Meetings 2023
Wednesday January 4, 2023

Let's Have Σ Fun! Dr. Shelley Stahl 1 / 17

Background

- Bard Math Circle

Let's Have Σ Fun! Dr. Shelley Stahl 2 / 17

Background

- Bard Math Circle

- Middle and High School Math

Let's Have Σ Fun! Dr. Shelley Stahl 2 / 17
Introducion Elementary school Middle school High school Math Circles and Outreach

Background

- Bard Math Circle

- Middle and High School Math
- Bridge to Enter Advanced Math (BEAM) Summer

Programs

Background

- Bard Math Circle

- Middle and High School Math
- Bridge to Enter Advanced Math (BEAM) Summer

Programs

-and more

Let's Have Σ Fun! Dr. Shelley Stahl 2 / 17

- Games are fun!and

Let's Have Σ Fun! Dr. Shelley Stahl 3 / 17
Introduction Elementary School Middle School High School Why Games?

- Games are fun!and
- Low floor, high ceiling
- Games are fun!and
- Low floor, high ceiling
- Adaptable

Let's Have Σ Fun! Dr. Shelley Stahl 3 / 17
Introduction Elementary School Middle School High School Why Games?

- Games are fun!and
- Low floor, high ceiling
- Adaptable
- Allows for multiple strategies/solutions

Let's Have Σ Fun! Dr. Shelley Stahl 3 / 17 Introduction Elementary School Middle School High School Why Games?

- Games are fun!and
- Low floor, high ceiling
- Adaptable
- Allows for multiple strategies/solutions
- Collaboration is encouraged required
- Player 1 begins on the "Start" square
- Players alternate turns moving a single token either one square up, one square left, or one square diagonally up and left.
- The first to reach the "WIN" square is the winner!

Let's Have Σ Fun! Dr. Shelley Stahl 4 / 17
Introduction Elementary School Middle School High school Strategy: Mork Backwarde

- Player 1 begins on the "Start" square
- Players alternate turns moving a single token either one square up, one square left, or one square diagonally up and left.
- The first to reach the "WIN" square is the winner!

What if we change the size of the game board? What if it is non-square; non-rectangular?

Let's Have Σ Fun! Dr. Shelley Stahl 4 / 17
Introducioin Elementary school Middele school High school Strategy: Solve a Simpler the

Problem

- Player 1 calls out any single digit number.
- Player 2 can then add any single digit number to the first one, and call out the result.
- The players continue to alternate, adding single digit numbers to the prior number.
- The first player to call out 100 wins

Problem

- Two players take turns popping up to 3 bubbles. Whoever pops the last bubble wins.

Problem

- Two players take turns popping up to 3 bubbles. Whoever pops the last bubble wins.

- Players take turns popping up to 4 bubbles. Whoever pops the last bubble loses.
- Players take turns popping any number of bubbles, as long as they
are in the same row. Whoever pops the last bubble wins/loses.

Let's Have Σ Fun! Dr. Shelley Stahl 6 / 17

Systematically

- Player 1 selects a number from the board and circles it. • Player

2 puts a box around all of its factors remaining on the board, then chooses and boxes their own new number.

- Player 1 now circles all of the remaining factors of Player 2's chosen number, before circling their own new number again.
- Play ends when there are no numbers left that have available factors. Each player adds the numbers in their circles/boxes, and the player with the highest sum wins.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
28	27	28	29	30

Let's Have Σ Fun! Dr. Shelley Stahl 7 / 17
Introduction Elementary School Middle School High School Parity Probiens: Subtraction

The number 60 is written on a blackboard. Players take turns subtracting from the number on the blackboard any of its divisors (including 1 or the number itself), and replacing the original number with the result of this subtraction. The player who writes the number 0 loses.

Let's Have Σ Fun! Dr. Shelley Stahl 8 / 17 Introduction Elementary School Middle School High School Parity

Problems: Subtraction

The number 60 is written on a blackboard. Players take turns subtracting from the number on the blackboard any of its divisors (including 1 or the number itself), and replacing the original number with the result of this subtraction. The player who writes the number 0 loses.

-What if we started with a different number?

- What if we cannot subtract the same

multiple more than once? Lets Have \sum Fun: Dr. Shelley

Stahl 8 / 17

Introduction Elementary School Middle School High School Parity Propiens: ains

- Player 1 begins the game with some number of coins and Player 2 has none.
- Player 2 can take any (non-zero) number of coins from Player 1. Then Player 1 can take some (again, non-zero) number of coins back, but necessarily a different number.
- Then again Player 2 takes some from Player 1, but necessarily a number which did not occur before. And so on.
- Gameplay ends when someone cannot make a move. The player
with the most coins wins.

Let's Have Σ Fun! Dr. Shelley Stahl 9 / 17
Introduction Elementary school Middle school High school Parity Problems: Coins

- Player 1 begins the game with some number of coins and Player 2 has none.
- Player 2 can take any (non-zero) number of coins from Player 1. Then Player 1 can take some (again, non-zero) number of coins back, but necessarily a different number.
- Then again Player 2 takes some from Player 1, but necessarily a number which did not occur before. And so on.
- Gameplay ends when someone cannot make a move. The player with the most coins wins.

What is the largest number of coins Player 2 can have at the end if • Player 1 had 13 coins at the beginning?

- Player 1 had 50 coins at the beginning?

Let's Have Σ Fun! Dr. Shelley Stahl 9 / 17
Introduction Elementary School Middele School High School Pigeonhole Principle

Two players, Red and Blue, play on a rectangular grid. They will alternate turns choosing a box and filling it in with their color.

- Red wants to create a rectangle whose corners are all the same color • Blue wants to prevent Red from doing so

Start with a small rectangle and build up. Is there a rectangle for which player Red is guaranteed to win?

Let's Have Σ Fun! Dr. Shelley Stahl 10 / 17
Introduction Elementary school Middle school High school Inductive Argument

Twenty points are marked on the circumference of a circle. Two players play the following game. On each turn, a player connects two of the 20 points with a segment, according to the following rules:

- a segment can only appear once during the game;
- no two segments can intersect, except at the endpoints; • the player who cannot make a move loses the game.

Let's Have Σ Fun! Dr. Shelley Stahl 11 / 17

Introduction Elementary School Middle School High School Graph Theory

Shannon Switching Game

- Two players, Short and Cut, alternate turns on a graph with two designated vertices
- Short will choose an edge to protect
- Cut will delete an unprotected edge
- If Short is able to create a protected path between the designated vertices, she wins
- If Cut can disconnect these nodes first, he wins

Shannon Switching Game

- Two players, Short and Cut, alternate turns on a graph with two designated vertices
- Short will choose an edge to protect
- Cut will delete an unprotected edge
- If Short is able to create a protected path between the designated vertices, she wins
- If Cut can disconnect these nodes first, he wins

Let's Have Σ Fun! Dr. Shelley Stahl 12 / 17
Introduction Elementary School Middle School High School Graph Theory

Shannon Switching Game

- Two players, Short and Cut, alternate turns on a graph with two designated vertices
- Short will choose an edge to protect
- Cut will delete an unprotected edge
- If Short is able to create a protected path between the designated vertices, she wins
- If Cut can disconnect these nodes first, he wins

Let's Have Σ Fun! Dr. Shelley Stahl 12 / 17
Introduction Elementary School Middle School High School Graph Theory

Shannon Switching Game

- Two players, Short and Cut, alternate turns on a graph with two designated vertices
- Short will choose an edge to protect
- Cut will delete an unprotected edge
- If Short is able to create a protected path between the designated vertices, she wins
- If Cut can disconnect these nodes first, he wins

Let's Have Σ Fun! Dr. Shelley Stahl 12 / 17 Introduction Elementary School Middle School High School Graph

Theory

- Two players, Short and Cut, alternate turns on a graph with two designated vertices
- Short will choose an edge to protect
- Cut will delete an unprotected edge
- If Short is able to create a protected path between the designated vertices, she wins
- If Cut can disconnect these nodes first, he wins

Introduction Elementary School Middle School High School Enumprative eombinatorics

Mastermind

- The codemaker chooses a sequence of 4 colored pegs (with or without repeated colors)
- The codebreaker takes guesses at what the code might be, one at a time
- After each guess, the codemaker indicates the number of correct colors in the correct spots, and the number of correct colors in incorrect spots
- If the codebreaker can guess the code, she wins! Otherwise,
the codemaker is the winner after 8-12 guesses

Let's Have Σ Fun! Dr. Shelley Stahl 13 / 17
Introduction Elementary School Middle School High School Finite Geonetry

Set

- Players all compete at once to identify "sets" of 3 cards • In a set, for each of the 4 characteristics on the cards (color, number, shape, and fill), the three cards must all match, or all differ

Let's Have Σ Fun! Dr. Shelley Stahl 14 / 17 Introduction Elementary School Middle School High School Finite

Geometry

Set

- Players all compete at once to identify "sets" of 3 cards • In a set, for each of the 4 characteristics on the cards (color, number, shape, and fill), the three cards must all match, or all differ

Each card can be considered as a "point" in
4-dimensional space Let's Have Σ Fun! Dr. Shelley Stahl 14/17

Spinpossible: A board of scrambled numbers 1-9 is

You can select any sub-rectangle within the square and spit it 180°. The goal is to return it to a standard position using only allowable spins.

Let's Have Σ Fun! Dr. Shelley Stahl 15 / 17
Introduction Elementary School Middle School High School AbStract

Algebra

Spinpossible: A board of scrambled numbers

1-9 is displayed.

You can select any sub-rectangle within the square and spit it 180°. The goal is to return it to a standard position using only allowable spins. • How many starting boards are possible?

- Can any board be solved?
- Does the order of the spins matter?
- Can you build some spins as a combination
of other spins? Let's Have \sum Fun! Dr. Shelley Stahl 15/17

Thank you!

rstahl@bridgew.edu

DeFranco, Vinsonhaler, and Naigles, PProblem SSSolving, 2013
Ernst, Dana C. An Inquiry-Based Approach to Abstract Algebra, Creative Commons, 2016
Kansas State University Manhattan Math Olympiad, 2022, https://www.math.ksu.edu/events/k-12/olympiad/index.html
MathCircles.org The Game of SET, 2022
https://mathcircles.org/activity/set/
PBS Mathline Factor Game, Math Circle Activity Database (2021), https://mathcircles.org/activity/factor-game/

Let's Have Σ Fun! Dr. Shelley Stahl 17 / 17

